Combinatorial proofs of generating function identities for F-partitions

نویسنده

  • Ae Ja Yee
چکیده

In his memoir in 1984, George E. Andrews introduces many general classes of Frobenius partitions (simply F-partitions). Especially, he focuses his interest on two general classes of F-partitions: one is F-partitions that allow up to k repetitions of an integer in any row, and the other is F-partitions whose parts are taken from k copies of the nonnegative integers. The latter are called k colored F-partitions or F-partitions with k colors. Andrews derives the generating functions of the number of F-partitions with k repetitions and F-partitions with k colors of n and leaves their purely combinatorial proofs as open problems. The primary goal of this article is to provide combinatorial proofs in answer to Andrews’ request.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On flushed partitions and concave compositions

Abstract. In this work, we give combinatorial proofs for generating functions of two problems, i.e. flushed partitions and concave compositions of even length. We also give combinatorial interpretation of one problem posed by Sylvester involving flushed partitions and then prove it. For these purposes, we first describe an involution and use it to prove core identities. Using this involution wi...

متن کامل

Combinatorial Proofs of q-Series Identities

We provide combinatorial proofs of six of the ten q-series identities listed in [3, Theorem 3]. Andrews, Jiménez-Urroz and Ono prove these identities using formal manipulation of identities arising in the theory of basic hypergeometric series. Our proofs are purely combinatorial, based on interpreting both sides of the identities as generating functions for certain partitions. One of these iden...

متن کامل

Bijective Proofs of Certain Vector Partition Identities

for 1 <; i < k. L. Carlitz [2] first derived the generating function for restricted bipartite partitions. Subsequently Carlitz and Roselle [3] enumerated certain special families of these partitions e.g., restricted bipartite partitions where the m< and % are all odd. Finally both Roselle [4] and Andrews [1] have obtained different generalizations for multipartite partitions. All these results ...

متن کامل

Particle Seas and Basic Hypergeometric Series

The author introduces overpartitions and particle seas as a generalization of partitions. Both new tools are used in bijective proofs of basic hypergeometric identities like the q-binomial theorem, Jacobi’s triple product, q-Gauß equality or even Ramanujan’s 1Ψ1 summation. 1. Partitions In 1969, G. E. Andrews was already looking for bijective proofs for some basic hypergeometric identities. The...

متن کامل

Overpartitions and Generating Functions for Generalized Frobenius Partitions

Generalized Frobenius partitions, or F -partitions, have recently played an important role in several combinatorial investigations of basic hypergeometric series identities. The goal of this paper is to use the framework of these investigations to interpret families of infinite products as generating functions for F -partitions. We employ q-series identities and bijective combinatorics.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • J. Comb. Theory, Ser. A

دوره 102  شماره 

صفحات  -

تاریخ انتشار 2003